
A New Hope
Compiling Managed Languages to
WebAssembly

8 Feb 2024—EPFL

AndyWingo

Igalia, S.L.

Agenda WebAssembly, then and now

Experience in Hoot Scheme-to-Wasm
compiler

Challenges

Discussion

WebAssembly,
the story

WebAssembly is an exciting new
universal compute platform

WebAssembly,
the pitch

Predictable portable performance

Low-level❧

Within 10% of native❧

Reliable composition via isolation

Modules share nothing by default❧

No nasal demons❧

Memory sandboxing❧

Compile your code to WebAssembly
for easier distribution and composition

WebAssembly,
the hype

It’s in all browsers! Serve your code to
anyone in the world!

It’s on the edge! Run code close to
your users!

It’s the new lightweight virtualization:
Wasm is what containers were to VMs!
Give me that Kubernetes cash!!!

WebAssembly,
the reality

WebAssembly is a weird backend for a
C compiler

What about Scala, OCaml, Scheme,
and so on – what about us?

WebAssembly,
the reality (2)

WebAssembly 1.0 was not well-suited
to garbage-collected languages

GC and
WebAssembly
1.0

Where do garbage-collected values
live?

For WebAssembly 1.0, only possible
answer: linear memory
(module
 (global $hp (mut i32) (i32.const 0))
 (memory $mem 10)) ;; 640 kB

Bundle e.g. a bump-pointer allocator

Out of memory? Run GC (which you
also bundle)

GC and
WebAssembly
1.0 (2)

Problem: Stop-the-world, not parallel,
not concurrent, oblivious to system
memory pressure

Problem: Maintaining root set
introduces overhead

Live object identification starts
with roots: globals and locals from
active stack frames

❧

WebAssembly gives you no way to
visit active stack frames

❧

Gut check: gut says no

GC and
WebAssembly
1.0 (3)

There is already a high-performance
concurrent parallel compacting GC in the
browser

Halftime: C++ 1 – Scala 0

Hark: GC is
here!

WebAssembly now has extension for
GC-managed data types

Shipping in Firefox, Chrome; Safari
soon

Google Sheets calculation engine: Java
to Wasm/GC

Hoot Scheme-to-Wasm compiler:
https://gitlab.com/spritely/
guile-hoot

Small binaries: tens of kilobytes

Interlude https://davexunit.itch.io/
strigoform

Bullet-hell vertical scroller written
using Hoot

Compiling to
Wasm/GC

Value representation❧

Retargetting an existing compiler❧

Pain points❧

Scheme
Values

;; any extern func
;; |
;; eq
;; / | \
;; i31 struct array

A reasonable unitype: (ref eq)

Immediate values in (ref i31)

fixnums with 30-bit range❧

chars, bools, etc❧

Explicit nullability: (ref null eq) vs
(ref eq)

Scheme
Values (2)

(rec
 (struct $heap-object
 (sub
 (struct (field $hash (mut i32)))))
 (struct $pair
 (sub $heap-object
 (struct
 (field $hash (mut i32))
 (field $car (mut (ref eq)))
 (field $cdr (mut (ref eq))))))
 ...)

Isorecursive subtyping on structs,
functions, arrays

Wasm/GC structs closer to shapes than
source-language types

Scheme
Values (3)

(func $cons (param (ref eq)
 (ref eq))
 (result (ref $pair))
 (struct.new_canon $pair
 ;; Lazily init hash if needed.
 (i32.const 0)
 ;; Car and cdr.
 (local.get 0)
 (local.get 1)))

(func $%car (param (ref $pair))
 (result (ref eq))
 (struct.get $pair 1 (local.get 0)))

Scheme
Values (4)

(func $car (param $arg (ref eq))
 (result (ref eq))
 (block $not-pair
 (return_call
 $%car
 (br_on_cast_fail $not-pair
 (ref eq) (ref $pair)
 (local.get $arg))))
 (call $type-error)
 (unreachable))

Compiling to
Wasm/GC

Value representation❧

Retargetting an existing compiler❧

Pain points❧

On
retargetting

Ideal: whole-program compiler.
Minimize dependencies, dynamic
linking

Hoot needed front-end work to enable
whole-program compilation

SSA-like IR just fine; “Beyond
relooper” great

On
retargetting
(2)

Backend: Wasm assembly that may
reference definitions from a stdlib

Link step to compose stdlib, apply low-
level optimizations

Google J2wasm: Emit very naïve Wasm
using the text format; rely on Binaryen
toolchain to assemble, link, and
optimize

Hoot does everything in-house

Compiling to
Wasm/GC

Value representation❧

Retargetting an existing compiler❧

Pain points❧

Annoyances Relative to native, Wasm/GC still
missing some pieces

Varargs❧

Async / effect handlers / delimited
continuations

❧

Polymorphism❧

Strings❧

Solution to all these is to virtualize

Annoyances:
Varargs

Varargs: uniform calling convention
(type $kvarargs
 (func (param $nargs i32)
 (param $arg0 (ref eq))
 (param $arg1 (ref eq))
 (param $arg2 (ref eq))))

Additional args spill to global array
(table)

Annoyances:
Async

Async: CPS-convert the whole thing

All calls tail calls; explicit stack for
non-tail calls

Suspend and resume by slicing stack

Stack switching proposal adds 1-shot
delimited continuations, removing
need for CPS conversion

Annoyances:
Polymorphism

Scheme: Numeric tower (exact
integers, fractions, inexact reals,
inexact complex)

Wasm: Fast path for fixnums, stdlib for
everything else; compiler can unbox
sometimes

Would ideally want inline caches that
feed into optimizing compiler, but no
JIT

Relative to native, Wasm/GC still
missing some pieces

Annoyances:
Strings

All languages have strings

Sure would be nice to just pass them
by reference, use host string support
libraries (e.g. regexes)

Instead we ship duplicate, worse
versions than what the browser has

Compiling to
Wasm/GC

Value representation❧

Retargetting an existing compiler❧

Pain points❧

A New Hope WebAssembly is now a good target for
managed languages

Hoot shows good results are possible

Next up, Scala? Discuss!
(visit-links
 "gitlab.com/spritely/guile-hoot"
 "wingolog.org"
 "wingo@igalia.com"
 "igalia.com"
 "mastodon.social/@wingo")

